Wednesday, May 14, 2014

$\mathbf\small\LaTeX$ dan Geogebra: Transformasi Geometri

Mencari pembanding, saya berjalan-jalan untuk mencari uraian materi "dari luar" tentang Transformasi Geometri dan akhirnya menemukan ini. Setelah saya pelajari, saya pikir bagus juga bila saya tulis ulang dalam Bahasa Indonesia.

Isinya memang tak selengkap Hanafiah, Djohandi, Drs. dkk. 1992. Geometri. Bandung: Pakar Raya, seperti tampak di samping, tetapi tulisan ini saya pandang cukup baik untuk dijadikan pelengkap dalam pembelajaran konsep Transformasi Geometri dengan memanfaatkan GeoGebra sebagai media utamanya.

Secara umum dokumen di bawah ini menunjukkan contoh pembuatan buku, contoh penyuntingan gambar dalam $\small\LaTeX$ hasil ekspor dari GeoGebradan penyusunan beberapa environment dalam $\small\LaTeX$. Dokumen tersebut saya susun dalam ShareLaTeX.

Demikian semoga bermanfaat!

Adjie Gumarang Pujakelana 2014


\documentclass[
bibliography=totoc,
headings=big,
captions=tableheading,
chapterprefix=true% like in standard class "report"
]{scrreprt}
\usepackage[left=2cm,right=2cm,top=2.5cm,bottom=3cm]{geometry}
\usepackage{amsmath}
\usepackage[svgnames]{xcolor}
\usepackage{graphicx}
\usepackage{minitoc}
\usepackage{setspace}
\usepackage{notoccite}
\usepackage[indonesian]{babel}
\usepackage{hyperref}
\hypersetup{
    colorlinks,
    linkcolor={red!50!black},
    citecolor={blue!50!black},
    urlcolor={DarkSlateGray}
}
\usepackage{pgf,tikz}
\usetikzlibrary{arrows}
\usepackage{concmath}
\usepackage[T1]{fontenc}
\renewcommand*\sectfont{\normalcolor}
\usepackage{adjustbox}
\setcounter{secnumdepth}{3} % number subsubsections
\setcounter{tocdepth}{3} % list subsubsections
\let\ds\displaystyle
\newcommand{\degre}{\ensuremath{^\circ}}
\usepackage[inline,shortlabels]{enumitem}

%----------------------------------------------------------------------------------------
% TITLE PAGE
%----------------------------------------------------------------------------------------

\newcommand*{\titleGM}{\begingroup % Create the command for including the title page in the document
\hbox{ % Horizontal box
\hspace*{0.2\textwidth} % Whitespace to the left of the title page
\rule{2pt}{\textheight} % Vertical line
\hspace*{0.05\textwidth} % Whitespace between the vertical line and title page text
\parbox[b]{0.75\textwidth}{ % Paragraph box which restricts text to less than the width of the page

{\noindent\Huge\bfseries Transformasi \\[0.5\baselineskip] Geometri}\\[2\baselineskip] % Title
\\[4\baselineskip] % Tagline or further description
{\large NATHAN WISDOM}\\[1\baselineskip] % Author name
Alihbahasa:\\[1\baselineskip]
{\large SULAEMAN, S.Pd.}

\vspace{0.5\textheight} % Whitespace between the title block and the publisher
{\noindent SMK Negeri 2 Sumbawa Besar}\\[\baselineskip] % Publisher and logo
}}
\endgroup}

\title{Transformasiku}

\begin{document}

\pagestyle{empty} % Removes page numbers

\titleGM % This command includes the title page

\pagenumbering{roman}

\cleardoublepage 
\dominitoc
\pdfbookmark[1]{Contents}{}
\tableofcontents
\cleardoublepage

\addchap{KATA PENGANTAR}

Ini semacam "versi-luar" tentang pemaparan konsep Tranformasi Geometri. Tulisan ini dialihbahasakan dari \href{http://jwilson.coe.uga.edu/EMAT6680Fa08/Wisdom/EMAT6690/Trans%20Geometry%20NJW/Transformation%20Geometry.htm}{\emph{Transformation Geometry and Symmetry for High School}} karya {\bf Nathan Wisdom} dari \href{http://jwilson.coe.uga.edu}{The University of Georgia, Mathematics Education}.

Tulisan ini tidak menyertakan soal-soal pelatihan yang bersesuaian dan hanya ringkasan pokok materi. Memang materi ini akan lebih menarik dalam pembelajaran bila disajikan secara visual dan dinamis. Dalam hal ini penulis mengacu pada penggunaan \href{http://www.keycurriculum.com}{\emph{The Geometer's Sketchpad (GSP)}} -- yang berbayar, sedangkan saya mengacu pada penggunaan \href{http://www.geogebra.org/cms/en/}{GeoGebra} -- yang gratis.

Semoga tulisan ini bermanfaat.\\

\begin{flushright}SULAEMAN, S.Pd.\end{flushright} 

Sumbawa Besar, 14 Mei 2014. 

\clearpage

\pagestyle{headings}
\pagenumbering{arabic}

%%%%%%%%%%%%%% Chapter Style Controls
\addtokomafont{chapterprefix}{\raggedleft \linespread{1}}
\addtokomafont{chapter}{\fontsize{35}{30}\selectfont}
\addtokomafont{section}{\fontsize{20}{11}\selectfont}
\addtokomafont{subsection}{\fontsize{18}{11}\selectfont}
\addtokomafont{subsubsection}{\fontsize{16}{11}\selectfont}

\renewcommand*{\chapterformat}{%
\mbox{\scalebox{0.80}{\chapappifchapterprefix{\nobreakspace}}%
\scalebox{2.5}{\color{gray}\thechapter\autodot}\enskip}}

\chapter{Pendahuluan}
Transformasi menjelaskan hubungan antara setiap titik (atau objek) dan bayangannya. Trans-formasi merupakan suatu pemetaan satu-ke-satu (\emph{one-to-one}) dari semua titik pada objek ke titik yang sesuai pada bayangannya. Dengan \emph{satu-satu} dimaksudkan bahwa jika diberikan dua titik berbeda $A$ dan $B$ pada suatu bidang (yaitu bidang datar), maka (oleh suatu transformasi) bayangan titik $A$ berbeda dari bayangan titik $B$.

Jika $P$ adalah titik di bidang dan $T$ adalah transformasi, maka $T (P) = P'$ dan dikatakan bahwa $T$ mengubah (\emph{transforms}) $P$ ke $P'$.

Ada enam jenis transformasi dasar: 
\begin{enumerate}
\item Pergeseran (\emph{Translation}), dilambangkan dengan $T$
\item Pencerminan (\emph{Reflection}), dilambangkan dengan $M$ (untuk \emph{Mirror}, yaitu cermin)
\item Pemutaran (\emph{Rotation}), dilambangkan dengan $R$
\item Pelebaran (\emph{Dilation}) atau Pembesaran (\emph{Enlargement}), dilambangkan dengan $E$.\\
Catatan:\\ Pelebaran (Dilatasi) adalah istilah yang lebih disukai, karena Pembesaran membawakan pengertian "semakin besar", sedangkan suatu bangun (\emph{ figure}) dapat berubah lebih besar atau lebih kecil bergantung pada faktor skalanya.
\item Gusuran (\emph{Shearing}), dilambangkan dengan $H$
\item Regangan (\emph{Stretching}), dilambangkan dengan $S$
\end{enumerate}
 
{\bf Kesamaan} (\emph{identity}) adalah menduduki tempat teratas dalam hierarki transformasi, dengan syarat segala hal tidak berubah (\emph{invariant}) oleh transformasi. Hanya translasi dan rotasi yang dapat memenuhi kondisi ini. Jadi translasi dan rotasi keduanya merupakan transformasi kekong-ruenan (\emph{congruency}).

Setelah identitas adalah {\bf isometris}. Ini adalah transformasi kekekalan (\emph{preserving}) jarak atau panjang. Libeskind (2008), mendefinisikan isometris sebagai transformasi yang mengekalkan jarak. Translasi, refleksi, dan rotasi adalah isometris, karena ketiganya mengekalkan panjang. Oleh karena itu translasi, refleksi, dan rotasi merupakan transformasi kekongruenan. 

Sekarang jika kita membiarkan sudut dikekalkan sedangkan panjangnya tidak, maka kita peroleh {\bf dilatasi}. Dilatasi, bersama-sama dengan isometris, merupakan {\bf transformasi kesebangunan} (\emph{similarity}).

Selanjutnya jika kita hanya mensyaratkan garis sejajar dipetakan ke garis sejajar, kita peroleh gusuran dan regangan. Semua transformasi dasar yang telah disebutkan digolongkan sebagai {\bf transformasi afin} (\emph{affine}).

Jika hanya urutan titik-titik pada garis, dan urutan simpul (\emph{node}) sebagai invarian terpenting, maka kita peroleh {\bf transformasi topologi} jaringan.

\chapter{Pergeseran (Translasi)}
Translasi adalah transformasi bidang di mana suatu bangun datar bergeser sepanjang garis lurus, dan mengubah posisinya tanpa terbalik. Setiap titik berpindah dalam jarak dan arah yang sama. Oleh karena itu semua titik yang diperlakukan terhadap translasi yang sama mengalami perpindahan yang sama.

Transformasi ini sepenuhnya ditentukan oleh satu titik. Menurut Libeskind (2008) Transformasi $P$ ke $P'$ sedemikian rupa sehingga jika $P$ tidak terletak pada garis yang memuat vektor transformasi $\overrightarrow{AB}$, maka $P'$ adalah titik pada bidang di mana $ABP'P$ adalah jajargenjang, dan jika $P$ terletak pada $\overleftrightarrow{AB}$ maka $P'$ adalah titik di mana $ABP'P$ adalah jajargenjang yang kehilangan sifat-sifatnya (\emph{degenerate}). Ingat bahwa besaran vektor memiliki besar dan arah, sehingga translasi vektor memiliki besar dan arah.

\section{Sifat Transformasi} 
Ketika mempelajari berbagai jenis transformasi, kita mencoba untuk menemukan sifat-sifat bangun yang tetap tidak berubah setelah transformasi. \href{http://www.geogebra.org/cms/en/}{GeogeGebra} adalah alat yang berguna untuk menyelidikinya.\\

\adjustbox{valign=t}{\begin{minipage}{\textwidth}
\definecolor{ccccff}{rgb}{0.8,0.8,1.0}
\definecolor{zzttqq}{rgb}{0.6,0.2,0.0}
\definecolor{qqqqff}{rgb}{0.0,0.0,1.0}
\definecolor{cqcqcq}{rgb}{0.7529411764705882,0.7529411764705882,0.7529411764705882}
\centering
\begin{tikzpicture}[scale=0.9,line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm]
\draw [color=cqcqcq,dash pattern=on 3pt off 3pt, xstep=1.0cm,ystep=1.0cm] (-9.621208451279132,-3) grid (5,6);
\draw[->,color=black] (-9.621208451279132,0.0) -- (5,0.0);
\foreach \x in {-9,-8,-7,-6,-5,-4,-3,-2,-1,1,2,3,4}
\draw[shift={(\x,0)},color=black] (0pt,2pt) -- (0pt,-2pt) node[below] {\footnotesize $\x$};
\draw[->,color=black] (0.0,-3) -- (0.0,6);
\foreach \y in {-2,-1,1,2,3,4,5}
\draw[shift={(0,\y)},color=black] (2pt,0pt) -- (-2pt,0pt) node[left] {\footnotesize $\y$};
\draw[color=black] (0pt,-10pt) node[right] {\footnotesize $0$};
\clip(-9.621208451279132,-3) rectangle (5,6);
\fill[line width=1.2000000000000002pt,color=zzttqq,fill=zzttqq,fill opacity=0.1] (-5,-2) -- (-2,-2) -- (-2,1) -- (-7,1) -- cycle;
\fill[color=ccccff,fill=ccccff,fill opacity=0.4] (-3,4) -- (-1,1) -- (2,1) -- (2,4) -- cycle;
\draw [->] (-9,2) -- (-5,5);
\draw [line width=1.2000000000000002pt,color=zzttqq] (-5,-2)-- (-2,-2);
\draw [line width=1.2000000000000002pt,color=zzttqq] (-2,-2)-- (-2,1);
\draw [line width=1.2000000000000002pt,color=zzttqq] (-2,1)-- (-7,1);
\draw [line width=1.2000000000000002pt,color=zzttqq] (-7,1)-- (-5,-2);
\draw [color=ccccff] (-3,4)-- (-1,1);
\draw [color=ccccff] (-1,1)-- (2,1);
\draw [color=ccccff] (2,1)-- (2,4);
\draw [color=ccccff] (2,4)-- (-3,4);
\draw [dash pattern=on 3pt off 3pt] (-5,-2)-- (-1,1);
\draw [dash pattern=on 3pt off 3pt] (-2,-2)-- (2,1);
\draw [dash pattern=on 3pt off 3pt] (-2,1)-- (2,4);
\draw [dash pattern=on 3pt off 3pt] (-7,1)-- (-3,4);
\begin{scriptsize}
\draw [fill=qqqqff] (-9,2) circle (1.5pt);
\draw (-9,1.6) node {$A (-9, 2)$};
\draw [fill=qqqqff] (-5,5) circle (1.5pt);
\draw (-4.4,5.322107714242232) node {$B (-5, 5)$};
\draw[color=black] (-7.488722580597559,3.9977217524505195) node {$\bar{u}= (4\quad 3)$};
\draw [fill=SaddleBrown] (-5,-2) circle (1.5pt);
\draw[color=SaddleBrown] (-4.368559043495049,-2.4) node {$C (-5, -2)$};
\draw [fill=SaddleBrown] (-7,1) circle (1.5pt);
\draw[color=SaddleBrown] (-7.8,0.7653221168910845) node {$F (-7, 1)$};
\draw [fill=SaddleBrown] (-2,-2) circle (1.5pt);
\draw[color=SaddleBrown] (-1.248395506392538,-2.3099469808286557) node {$D (-2, -2)$};
\draw [fill=SaddleBrown] (-2,1) circle (1.5pt);
\draw[color=SaddleBrown] (-2.6,1.3) node {$E (-2, 1)$};
\draw [fill=SteelBlue] (-1,1) circle (1.5pt);
\draw[color=SteelBlue] (-0.3,0.65) node {$C' (-1, 1)$};
\draw [fill=SteelBlue] (-3,4) circle (1.5pt);
\draw[color=SteelBlue] (-2.3,4.311982828129909) node {$F' (-3, 4)$};
\draw [fill=SteelBlue] (2,1) circle (1.5pt);
\draw[color=SteelBlue] (2.881892916822297,0.9000054350393943) node {$D' (1.9, 1)$};
\draw [fill=SteelBlue] (2,4) circle (1.5pt);
\draw[color=SteelBlue] (2.836998477439527,4.311982828129909) node {$E' (1.9, 4)$};
\end{scriptsize}
\end{tikzpicture}
    \end{minipage}}%

\vspace{1cm}
Trapesium $C'D'E'F'$ adalah bayangan dari trapesium $CDEF$ oleh transformasi. Ruas-ruas garis $\overline{CC'}$, $\overline{DD'}$, $\overline{EE'}$, dan $\overline{FF'}$ semuanya sejajar dan sama. Perpindahan yang bersesuaian atas vektor-vektor $\overrightarrow{CC'}$, $\overrightarrow{DD'}$, $\overrightarrow{EE'}$, dan $\overrightarrow{FF'}$ semuanya sama.
\[\overrightarrow{CC'}=\overrightarrow{DD'}=\overrightarrow{EE'}=\overrightarrow{FF'}\]
\[\textrm{atau}\]
\[CC'=DD'=EE'=FF'\]
Jadi salah satu dari empat vektor perpindahan itu menggambarkan suatu transformasi.\\

Kita dapat menyimpulkan: 
\begin{enumerate}
\item Semua titik yang dikenai translasi yang sama mengalami (\emph{undergo}) perpindahan yang sama. Titik-titik itu berpindah dalam jarak yang sama dan dalam arah yang sama.
\item Translasi yang sama adalah translasi atas jarak yang sama dan dalam arah yang sama.
\item Dalam suatu translasi, bayangan dari setiap ruas garis adalah ruas garis yang sama panjang dan sejajar dengan ruas garis dari objek semula.\\ Sisi-sisi yang bersesuaian (\emph{corresponding}) adalah sama dan sejajar.
\item Translasi mengekalkan jarak antara dua titik. Translasi mengekalkan panjang.
\item Garis sejajar tetap sejajar. Translasi mengekalkan kesejajaran.
\item Luas daerah tetap sama. Translasi mengekalkan luas daerah.
\item Urutan titik potong (\emph{vertices}) tetap sama. Translasi mengekalkan urutan titik.
\item Translasi mengekalkan arah (\emph{orientation}). 
\item Translasi adalah transformasi kekongruenan.
\end{enumerate}
 
\section{Translasi pada Bidang Koordinat}
Suatu vektor perpindahan (\emph{displacement}) atau translasi dapat diwakili oleh vektor kolom atau matriks kolom dalam bentuk:
\[\ds\begin{pmatrix}
x\\ 
y
\end{pmatrix}\]
Misalkan $P$ adalah sebuah titik dan $P'$ adalah bayangannya.\\ Jika $P(x,y)$ dikenai translasi oleh $\ds T=\ds\begin{pmatrix}
a\\ 
b
\end{pmatrix}$ maka bayangannya adalah $P'(x+a, y+b)$. \\
Definisi tersebut kemudian ditulis sebagai:
\[\color{Navy!50!RoyalBlue}T:P(x,y)\to P'(x+a, y+b)\]
sehingga
\[\textrm{(Matriks Objek)} + \textrm{(Matriks Translasi)} = \textrm{(Matriks Bayangannya)}\]
Penggunaan koordinat atau pendekatan analitik ini memudahkan kita untuk menunjukkan bahwa komposisi dari dua translasi adalah translasi tunggal.\\

Berikut adalah pembuktian aljabarnya:\\
Misalkan $\ds T_{a,b}$ menyatakan $\ds T=\ds\begin{pmatrix}
a\\ 
b
\end{pmatrix}$, maka
\begin{align*}
\ds T_{a,b}\circ T_{p,q} (x,y)&=T_{a,b}\left ( T_{p,q} (x,y)\right )\\
&=T_{a,b}\left ( x+p,y+q\right )\\
&=\left ( (x+p)+a,(y+q)+a\right )\\
&=\left ( x+(p+a),y+(q+a)\right )\\
&=\left ( x+(a+p),y+(a+q)\right )\\
&=T_{a+p,b+q}(x,y)
\end{align*}

Dengan menggunakan GeoGebra kita juga dapat menyelidiki komposisi dari dua translasi seperti berikut ini.\\

\adjustbox{valign=t}{\begin{minipage}{\textwidth}
\definecolor{yqqqqq}{rgb}{0.5019607843137255,0.0,0.0}
\definecolor{qqttqq}{rgb}{0.0,0.2,0.0}
\definecolor{ubqqys}{rgb}{0.29411764705882354,0.0,0.5098039215686274}
\definecolor{zzttqq}{rgb}{0.6,0.2,0.0}
\definecolor{qqqqtt}{rgb}{0.0,0.0,0.2}
\definecolor{cqcqcq}{rgb}{0.7529411764705882,0.7529411764705882,0.7529411764705882}
\centering
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm]
\draw [color=cqcqcq,dash pattern=on 1pt off 1pt, xstep=1.0cm,ystep=1.0cm] (-10,6) grid (7,-7);
\draw[->,color=black] (-10,0) -- (7,0);
\foreach \x in {-10,-5,5}
\draw[shift={(\x,0)},color=black] (0pt,2pt) -- (0pt,-2pt) node[below] {\footnotesize $\x$};
\draw[->,color=black] (0,-7) -- (0,6);
\foreach \y in {-6,-4,-2,2,4}
\draw[shift={(0,\y)},color=black] (2pt,0pt) -- (-2pt,0pt) node[left] {\footnotesize $\y$};
\clip(-10,6) rectangle (7,-7);
\fill[color=zzttqq,fill=zzttqq,fill opacity=0.1] (-6.0,-3.0) -- (-5.0,-1.0) -- (-7.0,1.0) -- cycle;
\fill[color=ubqqys,fill=ubqqys,fill opacity=0.1] (-2.0,-1.0) -- (-1.0,1.0) -- (-3.0,3.0) -- cycle;
\fill[color=qqttqq,fill=qqttqq,fill opacity=0.1] (4.0,-5.0) -- (5.0,-3.0) -- (3.0,-1.0) -- cycle;
\draw [color=zzttqq] (-6.0,-3.0)-- (-5.0,-1.0);
\draw [color=zzttqq] (-5.0,-1.0)-- (-7.0,1.0);
\draw [color=zzttqq] (-7.0,1.0)-- (-6.0,-3.0);
\draw [->] (-9.0,2.0) -- (-5.0,4.0);
\draw [->] (-5.0,5.0) -- (1.0,1.0);
\draw [color=ubqqys] (-2.0,-1.0)-- (-1.0,1.0);
\draw [color=ubqqys] (-1.0,1.0)-- (-3.0,3.0);
\draw [color=ubqqys] (-3.0,3.0)-- (-2.0,-1.0);
\draw [color=qqttqq] (4.0,-5.0)-- (5.0,-3.0);
\draw [color=qqttqq] (5.0,-3.0)-- (3.0,-1.0);
\draw [color=qqttqq] (3.0,-1.0)-- (4.0,-5.0);
\draw [->,dash pattern=on 3pt off 3pt,color=yqqqqq] (-7.0,1.0) -- (3.0,-1.0);
\draw [->] (-8.0,-4.0) -- (2.0,-6.0);
\begin{scriptsize}
\draw [fill=qqqqtt] (-6,-3) circle (1.5pt);
\draw[color=qqqqtt] (-5.5,-3.3) node {$A (-6, -3)$};
\draw [fill=qqqqtt] (-5.0,-1.0) circle (1.5pt);
\draw[color=qqqqtt] (-4.2,-1) node {$B (-5, -1)$};
\draw [fill=qqqqtt] (-7.0,1.0) circle (1.5pt);
\draw[color=qqqqtt] (-6.6,1.3) node {$C  (-7, 1)$};
\draw [fill=qqqqtt] (-9.0,2.0) circle (1.5pt);
\draw[color=qqqqtt] (-8.616567499231781,1.7) node {$D  (-9, 2)$};
\draw [fill=qqqqtt] (-5.0,4.0) circle (1.5pt);
\draw[color=qqqqtt] (-4.6,4.25) node {$E (-5, 4)$};
\draw[color=black] (-7.501833525318462,3.3) node {$\bar{u} = (4\ \ \ 2)$};
\draw [fill=qqqqtt] (-5.0,5.0) circle (1.5pt);
\draw[color=qqqqtt] (-4.598880468252525,5.178156971612257) node {$F (-5, 5)$};
\draw [fill=qqqqtt] (1.0,1.0) circle (1.5pt);
\draw[color=qqqqtt] (1.6,1) node {$G (1, 1)$};
\draw[color=black] (-1.20823129759951,3.2738197661770054) node {$\bar{v} = (6\ \ \ -4)$};
\draw [fill=qqqqtt] (-2.0,-1.0) circle (1.5pt);
\draw[color=qqqqtt] (-1.3,-1.2780106273023744) node {$A'  (-2, -1)$};
\draw [fill=qqqqtt] (-1.0,1.0) circle (1.5pt);
\draw[color=qqqqtt] (-0.25,1.114022691719953) node {$B' (-1, 1)$};
\draw [fill=qqqqtt] (-3.0,3.0) circle (1.5pt);
\draw[color=qqqqtt] (-3.8,3.1344780194378408) node {$C' (-3, 3)$};
\draw [fill=qqqqtt] (4.0,-5.0) circle (1.5pt);
\draw[color=qqqqtt] (4.5,-5.4) node {$A'' (4, -5)$};
\draw [fill=qqqqtt] (5.0,-3.0) circle (1.5pt);
\draw[color=qqqqtt] (5.8,-2.9) node {$B'' (5, -3)$};
\draw [fill=qqqqtt] (3.0,-1.0) circle (1.5pt);
\draw[color=qqqqtt] (3.6,-0.75) node {$C'' (3, -1)$};
\draw[color=yqqqqq] (1,-0.2) node {$\bar{w} = (10\ \ \ -2)$};
\draw [fill=qqqqtt] (-8.0,-4.0) circle (1.5pt);
\draw[color=qqqqtt] (-7.478609900861935,-3.6932675707812295) node {$P (-8, -4)$};
\draw [fill=qqqqtt] (2.0,-6.0) circle (1.5pt);
\draw[color=qqqqtt] (2.75,-5.922735518607864) node {$P' (2, -6)$};
\draw[color=black] (-2.5,-4.75) node {$\bar{z} = (10, -2)$};
\end{scriptsize}
\end{tikzpicture}
    \end{minipage}}%

\chapter{Refleksi}

Refleksi pada garis $l$ adalah pemadanan yang memasangkan setiap titik di bidang, tetapi bukan pada garis $l$, dengan titik $P'$ sedemikian rupa sehingga $l$ adalah pembagi dua tegak lurus (\emph{perpendicular bisector}) dari ruas garis $\overline{PP'}$. Jika $P$ terletak pada $l$ maka $P$ dipasangkan dengan dirinya sendiri (Libeskind, 2008).

Dalam bidang koordinat, bayangan-bayangan refleksi terhadap beberapa garis sangat mudah untuk diketahui. \href{http://www.geogebra.org/cms/en/}{GeogeGebra} adalah alat yang sangat berguna untuk menunjukkan dan menyelidiki refleksi terhadap sumbu-$x$, sumbu-$y$, garis $y =-x$, dan garis $y = x$.

\section{Sifat-sifat Refleksi} 

Dalam hal ini kita menyelidiki sifat-sifat yang tidak berubah (\emph{invariant}) dalam suatu refleksi dengan menggunakan \href{http://www.geogebra.org/cms/en/}{GeogeGebra}.\\

\adjustbox{valign=t}{\begin{minipage}{\textwidth}
\definecolor{qqqqtt}{rgb}{0.0,0.0,0.2}
\definecolor{ttqqtt}{rgb}{0.2,0.0,0.2}
\definecolor{zzttqq}{rgb}{0.6,0.2,0.0}
\definecolor{qqqqff}{rgb}{0.0,0.0,1.0}
\definecolor{xdxdff}{rgb}{0.49019607843137253,0.49019607843137253,1.0}
\definecolor{cqcqcq}{rgb}{0.7529411764705882,0.7529411764705882,0.7529411764705882}
\centering
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm]
\draw [color=cqcqcq,dash pattern=on 3pt off 3pt, xstep=1.0cm,ystep=1.0cm] (-6,4) grid (6,-1);
\draw[->,color=black] (-6,0) -- (6,0);
\foreach \x in {-5,-4,-3,-2,-1,1,2,3,4,5}
\draw[shift={(\x,0)},color=black] (0pt,2pt) -- (0pt,-2pt) node[below] {\footnotesize $\x$};
\draw[->,color=black] (0,-1) -- (0,4);
\foreach \y in {-1,1,2,3}
\draw[shift={(0,\y)},color=black] (2pt,0pt) -- (-2pt,0pt) node[left] {\footnotesize $\y$};
\draw[color=black] (0pt,-10pt) node[right] {\footnotesize $0$};
\clip(-6,4) rectangle (6,-1);
\fill[color=zzttqq,fill=zzttqq,fill opacity=0.1] (-5.0,0.0) -- (-1.0,0.0) -- (-3.0,3.0) -- (-5.0,3.0) -- cycle;
\draw [shift={(-1.0,0.0)},color=ttqqtt,fill=ttqqtt,fill opacity=0.1] (0,0) -- (123.6900675259798:0.7468399436451573) arc (123.6900675259798:180.00000000000003:0.7468399436451573) -- cycle;
\draw [shift={(-3.0,3.0)},color=ttqqtt,fill=ttqqtt,fill opacity=0.1] (0,0) -- (180.0:0.7468399436451573) arc (180.0:303.6900675259798:0.7468399436451573) -- cycle;
\fill[color=qqqqtt,fill=qqqqtt,fill opacity=0.1] (5.0,0.0) -- (1.0,0.0) -- (3.0,3.0) -- (5.0,3.0) -- cycle;
\draw [shift={(1.0,0.0)},color=ttqqtt,fill=ttqqtt,fill opacity=0.1] (0,0) -- (0.0:0.7468399436451573) arc (0.0:56.309932474020215:0.7468399436451573) -- cycle;
\draw [shift={(3.0,3.0)},color=ttqqtt,fill=ttqqtt,fill opacity=0.1] (0,0) -- (-123.6900675259798:0.7468399436451573) arc (-123.6900675259798:0.0:0.7468399436451573) -- cycle;
\draw [line width=1.2000000000000002pt,color=zzttqq] (-5.0,0.0)-- (-1.0,0.0);
\draw [line width=1.2000000000000002pt,color=zzttqq] (-1.0,0.0)-- (-3.0,3.0);
\draw [line width=1.2000000000000002pt,color=zzttqq] (-3.0,3.0)-- (-5.0,3.0);
\draw [line width=1.2000000000000002pt,color=zzttqq] (-5.0,3.0)-- (-5.0,0.0);
\draw [line width=1.2000000000000002pt,color=qqqqtt] (5.0,0.0)-- (1.0,0.0);
\draw [line width=1.2000000000000002pt,color=qqqqtt] (1.0,0.0)-- (3.0,3.0);
\draw [line width=1.2000000000000002pt,color=qqqqtt] (3.0,3.0)-- (5.0,3.0);
\draw [line width=1.2000000000000002pt,color=qqqqtt] (5.0,3.0)-- (5.0,0.0);
\begin{scriptsize}
\draw [fill=xdxdff] (-5.0,0.0) circle (1.5pt);
\draw[color=xdxdff] (-5.25,0.25) node {$A$};
\draw [fill=xdxdff] (-1.0,0.0) circle (1.5pt);
\draw[color=xdxdff] (-0.8,0.25) node {$B$};
\draw [fill=qqqqff] (-3.0,3.0) circle (1.5pt);
\draw[color=qqqqff] (-2.832656041046623,3.303702832588662) node {$C$};
\draw [fill=qqqqff] (-5.0,3.0) circle (1.5pt);
\draw[color=qqqqff] (-5,3.3) node {$D$};
\draw[color=ttqqtt] (-2.25,0.39102705237254887) node {$56.31\textrm{\degre}$};
\draw[color=ttqqtt] (-3.479917325539093,2.0340749283918944) node {$123.69\textrm{\degre}$};
\draw [fill=xdxdff] (5.0,0.0) circle (1.5pt);
\draw[color=xdxdff] (5.26,0.25) node {$A'$};
\draw [fill=xdxdff] (1.0,0.0) circle (1.5pt);
\draw[color=xdxdff] (0.75,0.25) node {$B'$};
\draw [fill=qqqqff] (5.0,3.0) circle (1.5pt);
\draw[color=qqqqff] (5,3.3) node {$D'$};
\draw [fill=qqqqff] (3.0,3.0) circle (1.5pt);
\draw[color=qqqqff] (2.85,3.3) node {$C'$};
\draw[color=ttqqtt] (2.25,0.39102705237254887) node {$56.31\textrm{\degre}$};
\draw[color=ttqqtt] (3.814219457395277,2.183442917120926) node {$123.69\textrm{\degre}$};
\end{scriptsize}
\end{tikzpicture}
    \end{minipage}}%

\vspace{1cm}
Kita dapat menyimpulkan bahwa: 
\begin{enumerate}
\item Garis cermin adalah pembagi dua tegak lurus ruas garis yang menghubungkan titik objek dan titik bayangannya.
\item Jarak tegak lurus dari titik objek ke garis cermin sama dengan jarak tegak lurus dari bayangannya ke garis cermin.
\item Refleksi mengekalkan jarak antara dua titik. Refleksi mengekalkan panjang.
\item Refleksi mengekalkan sudut.
\item Refleksi mengekalkan kesejajaran.
\item Refleksi mengekalkan luas daerah.
\item Refleksi mengekalkan urutan titik.
\item Refleksi mengekalkan perbandingan (rasio).
\item Refleksi adalah transformasi kekongruenan.
\item Dalam refleksi bayangan menyamping terbalik. Dengan demikian refleksi TIDAK mengekalkan arah (orientasi).
\end{enumerate}
 
\chapter{Rotasi} 
 Rotasi adalah transformasi di mana setiap titik berputar dengan sudut yang sama, terhadap pusat yang sama, dan dalam arah yang sama. Di bidang, rotasi dilakukan terhadap suatu titik tunggal yang disebut pusat rotasi. Pusat rotasi adalah satu-satunya titik yang tidak berubah posisinya setelah rotasi. Rotasi dapat terjadi searah atau berlawanan arah jarum jam. Sudut negatif berarti rotasi searah jarum jam dan sudut positif berarti rotasi berlawanan arah jarum jam.
 
 Definisi resmi dari Libeskind (2008): Jika $O$ adalah titik dan $\alpha$ adalah bilangan real, maka rotasi $O$ dengan $\alpha$ adalah fungsi dari bidang ke bidang yang memetakan $O$ ke dirinya sendiri dan memetakan setiap titik $P$ ke $P'$ demikian sehingga $OP = OP'$ dan ukuran sudut $POP'= \alpha$.
 
 \section{Sifat-sifat Rotasi} 
Kita akan menggunakan GeoGebra untuk menyelidiki sifat-sifat dari bangun yang tidak berubah (\emph{invariant}) dalam suatu rotasi.\\
 
\adjustbox{valign=t}{\begin{minipage}{\textwidth}
\definecolor{qqwuqq}{rgb}{0.0,0.39215686274509803,0.0}
\definecolor{qqqqtt}{rgb}{0.0,0.0,0.2}
\definecolor{qqwwtt}{rgb}{0.0,0.4,0.2}
\definecolor{uuuuuu}{rgb}{0.26666666666666666,0.26666666666666666,0.26666666666666666}
\definecolor{zzttqq}{rgb}{0.6,0.2,0.0}
\definecolor{qqqqff}{rgb}{0.0,0.0,1.0}
\definecolor{xdxdff}{rgb}{0.49019607843137253,0.49019607843137253,1.0}
\definecolor{cqcqcq}{rgb}{0.7529411764705882,0.7529411764705882,0.7529411764705882}
\centering
\begin{tikzpicture}[scale=0.6,line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm]
\draw [color=cqcqcq,dash pattern=on 1pt off 1pt, xstep=1.0cm,ystep=1.0cm] (-3,16) grid (17,-2);
\draw[->,color=black] (-3,0) -- (17,0);
\foreach \x in {5,10,15}
\draw[shift={(\x,0)},color=gray] (0pt,2pt) -- (0pt,-2pt) node[below] {\footnotesize $\x$};
\draw[->,color=black] (0,-2) -- (0,16);
\foreach \y in {2,4,6,8,10,12,14}
\draw[shift={(0,\y)},color=gray] (2pt,0pt) -- (-2pt,0pt) node[left] {\footnotesize $\y$};
\clip(-3,16) rectangle (17,-2);
\fill[line width=1.2000000000000002pt,color=zzttqq,fill=zzttqq,fill opacity=0.1] (10.0,0.0) -- (15.0,0.0) -- (13.0,2.0) -- (10.0,2.0) -- cycle;
\fill[line width=1.2000000000000002pt,color=zzttqq,fill=zzttqq,fill opacity=0.1] (5.000000000000001,8.660254037844386) -- (7.500000000000002,12.990381056766578) -- (4.767949192431125,12.258330249197702) -- (3.2679491924311237,9.660254037844386) -- cycle;
\fill[line width=1.2000000000000002pt,color=zzttqq,fill=zzttqq,fill opacity=0.1] (2.6645352591003757E-15,10.0) -- (3.552713678800501E-15,15.0) -- (-1.9999999999999964,13.000000000000002) -- (-1.9999999999999978,10.0) -- cycle;
\draw [shift={(0.0,-0.0)},color=qqwuqq,fill=qqwuqq,fill opacity=0.1] (0,0) -- (11.309932474020213:1.3719219881744478) arc (11.309932474020213:71.3099324740202:1.3719219881744478) -- cycle;
\draw [shift={(0.0,-0.0)},color=qqwuqq,fill=qqwuqq,fill opacity=0.1] (0,0) -- (71.3099324740202:1.0289414911308359) arc (71.3099324740202:101.3099324740202:1.0289414911308359) -- cycle;
\draw [line width=1.2000000000000002pt,color=zzttqq] (10.0,0.0)-- (15.0,0.0);
\draw [line width=1.2000000000000002pt,color=zzttqq] (15.0,0.0)-- (13.0,2.0);
\draw [line width=1.2000000000000002pt,color=zzttqq] (13.0,2.0)-- (10.0,2.0);
\draw [line width=1.2000000000000002pt,color=zzttqq] (10.0,2.0)-- (10.0,0.0);
\draw [line width=1.2000000000000002pt,color=zzttqq] (5.000000000000001,8.660254037844386)-- (7.500000000000002,12.990381056766578);
\draw [line width=1.2000000000000002pt,color=zzttqq] (7.500000000000002,12.990381056766578)-- (4.767949192431125,12.258330249197702);
\draw [line width=1.2000000000000002pt,color=zzttqq] (4.767949192431125,12.258330249197702)-- (3.2679491924311237,9.660254037844386);
\draw [line width=1.2000000000000002pt,color=zzttqq] (3.2679491924311237,9.660254037844386)-- (5.000000000000001,8.660254037844386);
\draw [line width=1.2000000000000002pt,color=zzttqq] (2.6645352591003757E-15,10.0)-- (3.552713678800501E-15,15.0);
\draw [line width=1.2000000000000002pt,color=zzttqq] (3.552713678800501E-15,15.0)-- (-1.9999999999999964,13.000000000000002);
\draw [line width=1.2000000000000002pt,color=zzttqq] (-1.9999999999999964,13.000000000000002)-- (-1.9999999999999978,10.0);
\draw [line width=1.2000000000000002pt,color=zzttqq] (-1.9999999999999978,10.0)-- (2.6645352591003757E-15,10.0);
\draw [shift={(0.0,-0.0)},color=qqwwtt]  plot[domain=0.0:1.5707963267948963,variable=\t]({1.0*10.0*cos(\t r)+-0.0*10.0*sin(\t r)},{0.0*10.0*cos(\t r)+1.0*10.0*sin(\t r)});
\draw [shift={(0.0,-0.0)},color=qqwwtt]  plot[domain=0.0:1.5707963267948963,variable=\t]({1.0*15.0*cos(\t r)+-0.0*15.0*sin(\t r)},{0.0*15.0*cos(\t r)+1.0*15.0*sin(\t r)});
\draw [shift={(0.0,-0.0)},color=qqwwtt]  plot[domain=0.15264932839526515:1.7234456551901616,variable=\t]({1.0*13.152946437965904*cos(\t r)+-0.0*13.152946437965904*sin(\t r)},{0.0*13.152946437965904*cos(\t r)+1.0*13.152946437965904*sin(\t r)});
\draw [shift={(0.0,-0.0)},color=qqwwtt]  plot[domain=0.19739555984988075:1.7681918866447772,variable=\t]({1.0*10.19803902718557*cos(\t r)+-0.0*10.19803902718557*sin(\t r)},{0.0*10.19803902718557*cos(\t r)+1.0*10.19803902718557*sin(\t r)});
\draw [color=qqqqtt] (0.0,-0.0)-- (10.0,2.0);
\draw [color=qqqqtt] (0.0,-0.0)-- (3.2679491924311237,9.660254037844386);
\draw [color=qqqqtt] (0.0,-0.0)-- (-1.9999999999999978,10.0);
\draw (10,1.2) node[anchor=north west] {\color{gray}\footnotesize$\textrm{Luas daerah}\ ABCD = 8$};
\draw (4,11) node[anchor=north west] {\color{gray}\footnotesize$\textrm{Luas daerah}\  A'B'C'D' = 8$};
\draw (0,14) node[anchor=north west] {\color{gray}\footnotesize$\textrm{Luas daerah}\  A''B''C''D'' = 8$};
\draw (7.7,1.5) node[anchor=north west] {\color{gray}\footnotesize$AD=2$};
\draw (1.6,9.3) node[anchor=north west] {\color{gray}\footnotesize$A'D'=2$};
\draw (-2.3,9.8) node[anchor=north west] {\color{gray}\footnotesize$A''D''=2$};
\begin{scriptsize}
\draw [fill=DarkSlateGray] (10.0,0.0) circle (1.5pt);
\draw[color=DarkSlateGray] (9.593962828793506,0.25) node {$A$};
\draw [fill=DarkSlateGray] (15.0,0.0) circle (1.5pt);
\draw[color=DarkSlateGray] (15.253141030013104,0.25) node {$B$};
\draw [fill=DarkSlateGray] (10.0,2.0) circle (1.5pt);
\draw[color=DarkSlateGray] (10.2,2.3) node {$D$};
\draw [fill=DarkSlateGray] (13.0,2.0) circle (1.5pt);
\draw[color=DarkSlateGray] (13.229556097455793,2.3) node {$C$};
\draw [fill=uuuuuu] (0.0,-0.0) circle (1.5pt);
\draw[color=uuuuuu] (0.23059525950289853,0.46990898512565377) node {};
\draw [fill=xdxdff] (5.000000000000001,8.660254037844386) circle (1.5pt);
\draw[color=DarkSlateGray] (5.066620267817828,8.324162367424368) node {$A'$};
\draw [fill=xdxdff] (7.500000000000002,12.990381056766578) circle (1.5pt);
\draw[color=DarkSlateGray] (7.844762293871085,13.3) node {$B'$};
\draw [fill=qqqqff] (4.767949192431125,12.258330249197702) circle (1.5pt);
\draw[color=DarkSlateGray] (4.86083196959166,12.6) node {$C'$};
\draw [fill=qqqqff] (3.2679491924311237,9.660254037844386) circle (1.5pt);
\draw[color=DarkSlateGray] (3.1459294843736005,10.05) node {$D'$};
\draw [fill=xdxdff] (2.6645352591003757E-15,10.0) circle (1.5pt);
\draw[color=DarkSlateGray] (0.4363835577290657,10.2) node {$A''$};
\draw [fill=xdxdff] (3.552713678800501E-15,15.0) circle (1.5pt);
\draw[color=DarkSlateGray] (0.4363835577290657,15.25) node {$B''$};
\draw [fill=qqqqff] (-1.9999999999999964,13.000000000000002) circle (1.5pt);
\draw[color=DarkSlateGray] (-2.45,13) node {$C''$};
\draw [fill=qqqqff] (-1.9999999999999978,10.0) circle (1.5pt);
\draw[color=DarkSlateGray] (-2.5,9.8) node {$D''$};
\draw[color=qqwuqq] (1.4310269991555407,1.2244660786216) node {$60\textrm{\degre}$};
\draw[color=qqwuqq] (0.09340306068545373,1.6360426750739343) node {$30\textrm{\degre}$};
\draw [fill=uuuuuu] (4.1339745962155625,9.160254037844386) circle (1.5pt);
\draw [fill=uuuuuu] (-0.9999999999999976,10.0) circle (1.5pt);
\end{scriptsize}
\end{tikzpicture}
    \end{minipage}}% 

\vspace{1cm}
Setelah penyelidikan dengan GeoGebra kita dapat menyimpulkan bahwa: 
\begin{enumerate}
\item Jarak dari objek dan bayangannya ke pusat rotasi adalah sama. 
\item Sudut rotasi dibentuk dengan menggabungkan titik objek, pusat rotasi, dan titik bayangan yang bersesuaian. Sudut rotasi adalah konstan untuk semua titik dalam rotasi tertentu.
\item Rotasi mengekalkan jarak antartitik. Rotasi mengekalkan panjang. 
\item Rotasi mengekalkan sudut.
\item Rotasi mengekalkan kesejajaran. 
\item Rotasi mengekalkan luas daerah.
\item Rotasi mengekalkan perbandingan (rasio).
\item Rotasi mengekalkan urutan titik.
\item Rotasi mengekalkan arah (orientasi) dari suatu bayangan. 
\item Rotasi adalah transformasi kekongruenan.
\end{enumerate}

\chapter{Dilatasi}
Dilatasi adalah transformasi yang menyapu bangun ke bangun yang serupa, dari pusat dilatasi, dengan menggunakan faktor skala $k$. Faktor skala adalah perbandingan (rasio) dari panjang yang bersesuaian pada bayangan terhadap panjang objek.
 
\section{Contoh Kasus}
Kita akan menggunakan GeoGebra untuk menyelidiki empat kasus faktor skala dilatasi. \\
Kasus 1: $k> 1$; Kasus 2: $0  1$}
\begin{itemize}
\item Bayangan lebih besar dari objek.
\item Objek dan bayangan keduanya terletak pada sisi yang sama terhadap pusat dilatasi.
\end{itemize}
    \end{minipage}}% 
    \hfill
\adjustbox{valign=t}{\begin{minipage}{0.6\textwidth}
\definecolor{wqwqwq}{rgb}{0.3764705882352941,0.3764705882352941,0.3764705882352941}
\definecolor{qqttzz}{rgb}{0.0,0.2,0.6}
\definecolor{qqqqtt}{rgb}{0.0,0.0,0.2}
\centering
\begin{tikzpicture}[scale=0.7,line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm]
\clip(-1,-4) rectangle (12,4);
\fill[color=qqttzz,fill=qqttzz,fill opacity=0.1] (4.0,1.0) -- (4.0,-1.0) -- (5.14,0.2) -- cycle;
\fill[color=qqttzz,fill=qqttzz,fill opacity=0.1] (8.0,2.0) -- (8.0,-2.0) -- (10.28,0.4) -- cycle;
\draw [color=qqttzz] (4.0,1.0)-- (4.0,-1.0);
\draw [color=qqttzz] (4.0,-1.0)-- (5.14,0.2);
\draw [color=qqttzz] (5.14,0.2)-- (4.0,1.0);
\draw [color=qqttzz] (8.0,2.0)-- (8.0,-2.0);
\draw [color=qqttzz] (8.0,-2.0)-- (10.28,0.4);
\draw [color=qqttzz] (10.28,0.4)-- (8.0,2.0);
\draw [dash pattern=on 2pt off 2pt,color=wqwqwq,domain=0.0:22.08000000000001] plot(\x,{(-0.0-2.0*\x)/8.0});
\draw [dash pattern=on 2pt off 2pt,color=wqwqwq,domain=0.0:22.08000000000001] plot(\x,{(-0.0--0.4*\x)/10.28});
\draw [dash pattern=on 2pt off 2pt,color=wqwqwq,domain=0.0:22.08000000000001] plot(\x,{(-0.0--2.0*\x)/8.0});
\draw (4.600000000000001,-0.16000000000000003) node[anchor=north west] {\footnotesize Objek};
\draw (9.160000000000004,-0.5200000000000001) node[anchor=north west] {\footnotesize Bayangan};
\draw (4.020000000000001,2.9600000000000004) node[anchor=north west] {$k>1$};
\begin{scriptsize}
\draw [fill=qqqqtt] (4.0,-1.0) circle (1.5pt);
\draw[color=qqqqtt] (3.9200000000000013,-1.3) node {$B$};
\draw [fill=qqqqtt] (4.0,1.0) circle (1.5pt);
\draw[color=qqqqtt] (3.9800000000000013,1.3400000000000003) node {$A$};
\draw [fill=qqqqtt] (5.14,0.2) circle (1.5pt);
\draw[color=qqqqtt] (5.3,0.6) node {$C$};
\draw [fill=qqqqtt] (0.0,-0.0) circle (1.5pt);
\draw[color=qqqqtt] (-0.24000000000000007,0.16000000000000003) node {$O$};
\draw [fill=qqqqtt] (8.0,2.0) circle (1.5pt);
\draw[color=qqqqtt] (8.040000000000003,2.3400000000000007) node {$A'$};
\draw [fill=qqqqtt] (8.0,-2.0) circle (1.5pt);
\draw[color=qqqqtt] (8.000000000000002,-2.3) node {$B'$};
\draw [fill=qqqqtt] (10.28,0.4) circle (1.5pt);
\draw[color=qqqqtt] (10.5,0.8) node {$C'$};
\end{scriptsize}
\end{tikzpicture}
    \end{minipage}}%     

\adjustbox{valign=t}{\begin{minipage}{0.4\textwidth}
\boldmath
{\bf Dilatasi dengan faktor skala $< -1$}
\begin{itemize}
\item Bayangan lebih besar dari objek.
\item Bayangan dan objek terletak pada sisi berlawanan terhadap pusat dilatasi.
\item Bayangan terbalik (terputar \unboldmath$180^\circ$).
\end{itemize}
    \end{minipage}}% 
    \hfill
\adjustbox{valign=t}{\begin{minipage}{0.6\textwidth}
\definecolor{qqttzz}{rgb}{0.0,0.2,0.6}
\definecolor{qqqqff}{rgb}{0.0,0.0,1.0}
\definecolor{qqqqtt}{rgb}{0.0,0.0,0.2}
\centering
\begin{tikzpicture}[scale=0.8,line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm]
\clip(-7,-3) rectangle (5,3);
\fill[color=qqttzz,fill=qqttzz,fill opacity=0.1] (1.06,-0.02) -- (2.5,-1.06) -- (1.48,0.92) -- cycle;
\fill[color=qqttzz,fill=qqttzz,fill opacity=0.1] (-2.12,0.04) -- (-5.0,2.12) -- (-2.96,-1.84) -- cycle;
\draw (1.86,0.7800000000000001) node[anchor=north west] {\footnotesize Objek};
\draw [color=qqttzz] (1.06,-0.02)-- (2.5,-1.06);
\draw [color=qqttzz] (2.5,-1.06)-- (1.48,0.92);
\draw [color=qqttzz] (1.48,0.92)-- (1.06,-0.02);
\draw [color=qqttzz] (-2.12,0.04)-- (-5.0,2.12);
\draw [color=qqttzz] (-5.0,2.12)-- (-2.96,-1.84);
\draw [color=qqttzz] (-2.96,-1.84)-- (-2.12,0.04);
\draw [dash pattern=on 2pt off 2pt,domain=-7.96:15.040000000000001] plot(\x,{(-0.0--0.06*\x)/-3.18});
\draw [dash pattern=on 2pt off 2pt,domain=-7.96:15.040000000000001] plot(\x,{(-0.0-2.7600000000000002*\x)/-4.4399999999999995});
\draw [dash pattern=on 2pt off 2pt,domain=-7.96:15.040000000000001] plot(\x,{(-0.0--3.18*\x)/-7.5});
\draw (-1.36,2.1800000000000006) node[anchor=north west] {$k<-1 0="" 1="" adjustbox="" anchor="north" antara="" bayangan="" begin="" bf="" cap="round,line" centering="" circle="" color="qqqqtt]" dan="" dari="" definecolor="" dengan="" dilatasi.="" dilatasi="" draw="" end="" faktor="" fill="qqqqtt]" footnotesize="" hfill="" item="" itemize="" join="round," kecil="" keduanya="" lebih="" minipage="" node="" objek.="" objek="" pada="" pt="" pusat="" qqqqtt="" qqttzz="" rgb="" sama="" scale="1.25,line" scriptsize="" sisi="" skala="" terhadap="" terletak="" tikzpicture="" valign="t}{\begin{minipage}{0.6\textwidth}" west="" yang="">=triangle 45,x=1.0cm,y=1.0cm]
\clip(-1,-2) rectangle (7,3);
\fill[color=qqttzz,fill=qqttzz,fill opacity=0.1] (4.14,1.4) -- (4.0,-0.74) -- (5.46,0.3) -- cycle;
\fill[color=qqttzz,fill=qqttzz,fill opacity=0.1] (2.277,0.77) -- (2.2,-0.40700000000000003) -- (3.003,0.165) -- cycle;
\draw [color=qqttzz] (4.14,1.4)-- (4.0,-0.74);
\draw [color=qqttzz] (4.0,-0.74)-- (5.46,0.3);
\draw [color=qqttzz] (5.46,0.3)-- (4.14,1.4);
\draw [dash pattern=on 2pt off 2pt,domain=0.0:18.7] plot(\x,{(-0.0--1.4*\x)/4.14});
\draw [dash pattern=on 2pt off 2pt,domain=0.0:18.7] plot(\x,{(-0.0--0.3*\x)/5.46});
\draw [dash pattern=on 2pt off 2pt,domain=0.0:18.7] plot(\x,{(-0.0-0.74*\x)/4.0});
\draw [color=qqttzz] (2.277,0.77)-- (2.2,-0.40700000000000003);
\draw [color=qqttzz] (2.2,-0.40700000000000003)-- (3.003,0.165);
\draw [color=qqttzz] (3.003,0.165)-- (2.277,0.77);
\draw (1.96,2.24) node[anchor=north west] {$0=triangle 45,x=1.0cm,y=1.0cm]
\clip(-3,-1.5) rectangle (5.5,1.5);
\fill[color=qqttzz,fill=qqttzz,fill opacity=0.1] (4.9,-0.28) -- (3.46,1.12) -- (3.18,-0.92) -- cycle;
\fill[color=qqttzz,fill=qqttzz,fill opacity=0.1] (-2.45,0.14) -- (-1.73,-0.56) -- (-1.59,0.46) -- cycle;
\draw [color=qqttzz] (4.9,-0.28)-- (3.46,1.12);
\draw [color=qqttzz] (3.46,1.12)-- (3.18,-0.92);
\draw [color=qqttzz] (3.18,-0.92)-- (4.9,-0.28);
\draw [color=qqttzz] (-2.45,0.14)-- (-1.73,-0.56);
\draw [color=qqttzz] (-1.73,-0.56)-- (-1.59,0.46);
\draw [color=qqttzz] (-1.59,0.46)-- (-2.45,0.14);
\draw [dash pattern=on 2pt off 2pt,domain=-7.287272727272732:13.62181818181819] plot(\x,{(-0.0--0.42000000000000004*\x)/-7.3500000000000005});
\draw [dash pattern=on 2pt off 2pt,domain=-7.287272727272732:13.62181818181819] plot(\x,{(-0.0-1.6800000000000002*\x)/-5.1899999999999995});
\draw [dash pattern=on 2pt off 2pt,domain=-7.287272727272732:13.62181818181819] plot(\x,{(-0.0--1.3800000000000001*\x)/-4.7700000000000005});
\draw (-0.21454545454545487,1.54396694214876) node[anchor=north west] {$-1=triangle 45,x=1.0cm,y=1.0cm]
\draw [color=cqcqcq,dash pattern=on 3pt off 3pt, xstep=2.0cm,ystep=2.0cm] (-22,-16) grid (22,16);
\draw[->,color=black] (-22,0.0) -- (22,0.0);
\foreach \x in {-20,-15,-10,-5,5,10,15,20,25,30,35,40,45}
\draw[shift={(\x,0)},color=black] (0pt,2pt) -- (0pt,-2pt) node[below] {\footnotesize $\x$};
\draw[->,color=black] (0.0,-16) -- (0.0,16);
\foreach \y in {-15,-10,-5,5,10,15}
\draw[shift={(0,\y)},color=black] (-2pt,0pt) node[left] {\footnotesize $\y$};
\draw[color=black] (0pt,-10pt) node[right] {\footnotesize $0$};
\clip(-22,-16) rectangle (22,16);
\fill[line width=1.2000000000000002pt,color=qqwwzz,fill=qqwwzz,fill opacity=0.1] (2.0,2.0) -- (6.0,2.0) -- (6.0,4.0) -- (4.0,4.0) -- cycle;
\fill[line width=1.2000000000000002pt,color=qqwwzz,fill=qqwwzz,fill opacity=0.1] (6.0,6.0) -- (18.0,6.0) -- (18.0,12.0) -- (12.0,12.0) -- cycle;
\fill[line width=1.2000000000000002pt,color=qqwwzz,fill=qqwwzz,fill opacity=0.1] (-6.0,-6.0) -- (-18.0,-6.0) -- (-18.0,-12.0) -- (-12.0,-12.0) -- cycle;
\draw [shift={(2.0,2.0)},color=zzttqq,fill=zzttqq,fill opacity=0.1] (0,0) -- (0.0:1.8074268593537046) arc (0.0:45.0:1.8074268593537046) -- cycle;
\draw [shift={(6.0,6.0)},color=zzttqq,fill=zzttqq,fill opacity=0.1] (0,0) -- (0.0:1.8074268593537046) arc (0.0:45.0:1.8074268593537046) -- cycle;
\draw [shift={(-6.0,-6.0)},color=zzttqq,fill=zzttqq,fill opacity=0.1] (0,0) -- (180.0:1.8074268593537046) arc (180.0:225.0:1.8074268593537046) -- cycle;
\draw (-14,-4.5) node[anchor=north west] {$k=-3$};
\draw [line width=1.2000000000000002pt,color=qqwwzz] (2.0,2.0)-- (6.0,2.0);
\draw [line width=1.2000000000000002pt,color=qqwwzz] (6.0,2.0)-- (6.0,4.0);
\draw [line width=1.2000000000000002pt,color=qqwwzz] (6.0,4.0)-- (4.0,4.0);
\draw [line width=1.2000000000000002pt,color=qqwwzz] (4.0,4.0)-- (2.0,2.0);
\draw [line width=1.2000000000000002pt,color=qqwwzz] (6.0,6.0)-- (18.0,6.0);
\draw [line width=1.2000000000000002pt,color=qqwwzz] (18.0,6.0)-- (18.0,12.0);
\draw [line width=1.2000000000000002pt,color=qqwwzz] (18.0,12.0)-- (12.0,12.0);
\draw [line width=1.2000000000000002pt,color=qqwwzz] (12.0,12.0)-- (6.0,6.0);
\draw [line width=1.2000000000000002pt,color=qqwwzz] (-6.0,-6.0)-- (-18.0,-6.0);
\draw [line width=1.2000000000000002pt,color=qqwwzz] (-18.0,-6.0)-- (-18.0,-12.0);
\draw [line width=1.2000000000000002pt,color=qqwwzz] (-18.0,-12.0)-- (-12.0,-12.0);
\draw [line width=1.2000000000000002pt,color=qqwwzz] (-12.0,-12.0)-- (-6.0,-6.0);
\draw [dash pattern=on 3pt off 3pt,color=zzttqq,domain=-21.44989265453669:47.83480362068865] plot(\x,{(-0.0-24.0*\x)/-24.0});
\draw [dash pattern=on 3pt off 3pt,color=zzttqq,domain=-21.44989265453669:47.83480362068865] plot(\x,{(-0.0-24.0*\x)/-36.0});
\draw [dash pattern=on 3pt off 3pt,color=zzttqq,domain=-21.44989265453669:47.83480362068865] plot(\x,{(-0.0-12.0*\x)/-36.0});
\draw (14,13.5) node[anchor=north west] {$k=3$};
\draw (6.1,3.7) node[anchor=north west] {\footnotesize Luas daerah D = 6};
\draw (9.5,9.5) node[anchor=north west] {\footnotesize Luas daerah D' = 54};
\draw (-18,-8) node[anchor=north west] {\footnotesize Luas Daerah D'' = 54};
\draw (0.1,-0.7) node[anchor=north west] {\footnotesize Pusat dilatasi};
\begin{scriptsize}
\draw[color=zzttqq] (4.5,2.8) node {\footnotesize $45\textrm{\degre}$};
\draw[color=zzttqq] (8.5,7) node {\footnotesize $45\textrm{\degre}$};
\draw[color=zzttqq] (-8.55691439114693,-7) node {\footnotesize $45\textrm{\degre}$};
\end{scriptsize}
\end{tikzpicture}
    \end{minipage}}%       
    
\adjustbox{valign=t}{\begin{minipage}{\textwidth}
\definecolor{ffqqqq}{rgb}{1.0,0.0,0.0}
\definecolor{qqqqff}{rgb}{0.0,0.0,1.0}
\definecolor{qqwwzz}{rgb}{0.0,0.4,0.6}
\definecolor{qqqqtt}{rgb}{0.0,0.0,0.2}
\definecolor{cqcqcq}{rgb}{0.7529411764705882,0.7529411764705882,0.7529411764705882}
\centering
\begin{tikzpicture}[scale=0.9,line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm]
\draw [color=cqcqcq,dash pattern=on 2pt off 2pt, xstep=1.0cm,ystep=1.0cm] (-1,-2) grid (17.5,9);
\draw[->,color=black] (-1,0.0) -- (17.5,0.0);
\foreach \x in {5,10,15}
\draw[shift={(\x,0)},color=black] (0pt,2pt) -- (0pt,-2pt) node[below] {\footnotesize $\x$};
\draw[->,color=black] (0.0,-2) -- (0.0,9);
\foreach \y in {2,4,6,8}
\draw[shift={(0,\y)},color=black] (2pt,0pt) -- (-2pt,0pt) node[left] {\footnotesize $\y$};
\draw[color=black] (0pt,-10pt) node[right] {};
\clip(-1,-2) rectangle (17.5,9);
\fill[line width=1.2000000000000002pt,color=qqwwzz,fill=qqwwzz,fill opacity=0.1] (13.0,6.0) -- (16.0,6.0) -- (16.0,8.0) -- (14.0,8.0) -- cycle;
\fill[line width=1.2000000000000002pt,color=qqwwzz,fill=qqwwzz,fill opacity=0.1] (9.5,4.0) -- (11.0,4.0) -- (11.0,5.0) -- (10.0,5.0) -- cycle;
\fill[line width=1.2000000000000002pt,color=qqwwzz,fill=qqwwzz,fill opacity=0.1] (2.5,0.0) -- (1.0,0.0) -- (1.0,-1.0) -- (2.0,-1.0) -- cycle;
\draw [line width=1.2000000000000002pt,color=qqwwzz] (13.0,6.0)-- (16.0,6.0);
\draw [line width=1.2000000000000002pt,color=qqwwzz] (16.0,6.0)-- (16.0,8.0);
\draw [line width=1.2000000000000002pt,color=qqwwzz] (16.0,8.0)-- (14.0,8.0);
\draw [line width=1.2000000000000002pt,color=qqwwzz] (14.0,8.0)-- (13.0,6.0);
\draw [line width=1.2000000000000002pt,color=qqwwzz] (9.5,4.0)-- (11.0,4.0);
\draw [line width=1.2000000000000002pt,color=qqwwzz] (11.0,4.0)-- (11.0,5.0);
\draw [line width=1.2000000000000002pt,color=qqwwzz] (11.0,5.0)-- (10.0,5.0);
\draw [line width=1.2000000000000002pt,color=qqwwzz] (10.0,5.0)-- (9.5,4.0);
\draw [line width=1.2000000000000002pt,color=qqwwzz] (2.5,0.0)-- (1.0,0.0);
\draw [line width=1.2000000000000002pt,color=qqwwzz] (1.0,0.0)-- (1.0,-1.0);
\draw [line width=1.2000000000000002pt,color=qqwwzz] (1.0,-1.0)-- (2.0,-1.0);
\draw [line width=1.2000000000000002pt,color=qqwwzz] (2.0,-1.0)-- (2.5,0.0);
\draw [dash pattern=on 2pt off 2pt,color=ffqqqq,domain=-1.6080670334644955:19.85421044126046] plot(\x,{(-15.0--6.0*\x)/10.5});
\draw [dash pattern=on 2pt off 2pt,color=ffqqqq,domain=-1.6080670334644955:19.85421044126046] plot(\x,{(--6.0-6.0*\x)/-15.0});
\draw [dash pattern=on 2pt off 2pt,color=ffqqqq,domain=-1.6080670334644955:19.85421044126046] plot(\x,{(--24.0-9.0*\x)/-15.0});
\draw (12.7,5.7) node[anchor=north west] {\footnotesize Luas daerah ABCD = 5};
\draw (9,3.8165534998987383) node[anchor=north west] {\footnotesize Luas derah A'B'C'D' = 1.25};
\draw (2.5,-0.5) node[anchor=north west] {\footnotesize Luas daerah A''B''C''D'' = 1.25};
\draw (8,5) node[anchor=north west] {$k=\frac{1}{2}$};
\draw (1,1.5) node[anchor=north west] {$k=-\frac{1}{2}$};
\draw (5,7.3) node[anchor=north west] {$\ds\frac{\textrm{\footnotesize Luas daerah A'B'C'D'}}{\textrm{\footnotesize Luas daerah ABCD}}=\frac{1}{4}$};
\draw (6,2) node[anchor=north west] {\footnotesize Pusat dilatasi};
\begin{scriptsize}
\draw [fill=qqqqtt] (13.0,6.0) circle (1.5pt);
\draw[color=qqqqtt] (12.8,6.1) node {$A$};
\draw [fill=qqqqtt] (16.0,6.0) circle (1.5pt);
\draw[color=qqqqtt] (16.25,6.1) node {$B$};
\draw [fill=qqqqtt] (16.0,8.0) circle (1.5pt);
\draw[color=qqqqtt] (16.12164044565612,8.258311794667891) node {$C$};
\draw [fill=qqqqtt] (14.0,8.0) circle (1.5pt);
\draw[color=qqqqtt] (14.124715498007799,8.258311794667891) node {$D$};
\draw [fill=qqqqff] (6.0,2.0) circle (1.5pt);
\draw [fill=qqqqtt] (9.5,4.0) circle (1.5pt);
\draw[color=qqqqtt] (9.3,4.1) node {$A'$};
\draw [fill=qqqqtt] (11.0,4.0) circle (1.5pt);
\draw[color=qqqqtt] (11.3,4) node {$B'$};
\draw [fill=qqqqtt] (11.0,5.0) circle (1.5pt);
\draw[color=qqqqtt] (11.19464805145839,5.253592948206405) node {$C'$};
\draw [fill=qqqqtt] (10.0,5.0) circle (1.5pt);
\draw[color=qqqqtt] (10.186854152645218,5.253592948206405) node {$D'$};
\draw [fill=qqqqtt] (2.5,0.0) circle (1.5pt);
\draw[color=qqqqtt] (2.740377011414561,0.25194915409660323) node {$A''$};
\draw [fill=qqqqtt] (1.0,0.0) circle (1.5pt);
\draw[color=qqqqtt] (1.0607205133926076,0.2892748540526465) node {$B''$};
\draw [fill=qqqqtt] (1.0,-1.0) circle (1.5pt);
\draw[color=qqqqtt] (1.1167090633266727,-1.3) node {$C''$};
\draw [fill=qqqqtt] (2.0,-1.0) circle (1.5pt);
\draw[color=qqqqtt] (2.2178172120299533,-1.3) node {$D''$};
\end{scriptsize}
\end{tikzpicture}
    \end{minipage}}%        

\vspace{1cm}  
Dengan menggunakan GeoGebra, seperti digambarkan pada Gambar 8 sampai Gambar 10, kita dapat menyimpulkan bahwa:
\begin{enumerate}
\item Dalam dilatasi, bayangan dari suatu titik, titik semula, dan pusat dilatasi adalah segaris (\emph{collinear}).
\item Perbandingan panjang ruas garis yang menghubungkan titik-titik pada bayangan terhadap pusat dilatasi, dan panjang ruas garis yang menghubungkan titik-titik yang bersesuaian pada objek terhadap pusat dilatasi adalah suatu konstanta yang disebut faktor skala.
\item Dilatasi tidak mengekalkan panjang.
\item Dilatasi mengekalkan sudut.
\item Dilatasi adalah transformasi kesebangunan (\emph{similarity}).
\item Dilatasi mengekalkan kesejajaran.
\item Dilatasi tidak mengekalkan luas daerah. Luas daerah bayangan $= k ^ 2 \times$ luas daerah objek.
\item Dilatasi mengekalkan perbandingan (rasio).
\item Dilatasi mengekalkan urutan titik.
\item Dilatasi mengekalkan arah (orientasi).
\end{enumerate}

\chapter{Gusuran (\emph{Shearing})}
Gusuran adalah transformasi di mana semua titik sepanjang garis $l$ yang diberikan tetap (\emph{fixed}) sedangkan titik-titik lainnya bergeser sejajar dengan $l$ dalam jarak yang sebanding dengan jarak tegak lurusnya dari $l$. 

Kita dapat menggunakan GeoGebra untuk menjelaskan suatu gusuran. (Meskipun, harap dicatat, GeoGebra tidak memiliki fungsi gusuran).\\

\adjustbox{valign=t}{\begin{minipage}{\textwidth}
\definecolor{qqwwzz}{rgb}{0.0,0.4,0.6}
\definecolor{zzttqq}{rgb}{0.6,0.2,0.0}
\definecolor{qqqqtt}{rgb}{0.0,0.0,0.2}
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm]
\clip(-3,-3) rectangle (12,2);
\fill[color=zzttqq,fill=zzttqq,fill opacity=0.1] (-0.76,1.24) -- (4.28,-2.34) -- (11.46,-2.26) -- cycle;
\fill[color=qqwwzz,fill=qqwwzz,fill opacity=0.1] (4.28,-2.34) -- (11.46,-2.26) -- (4.239490756185171,1.2957046323808934) -- cycle;
\draw[color=qqqqtt,fill=qqqqtt,fill opacity=0.1] (4.492118867959989,-2.337636558574262) -- (4.489755426534251,-2.125517690614273) -- (4.277636558574263,-2.1278811320400113) -- (4.28,-2.34) -- cycle; 
\draw[color=qqqqtt,fill=qqqqtt,fill opacity=0.1] (4.241854197610909,1.0835857644209048) -- (4.4539730655708984,1.0859492058466427) -- (4.45160962414516,1.2980680738066315) -- (4.239490756185171,1.2957046323808934) -- cycle; 
\draw [color=zzttqq] (-0.76,1.24)-- (4.28,-2.34);
\draw [color=zzttqq] (4.28,-2.34)-- (11.46,-2.26);
\draw [color=zzttqq] (7.974993482966486,-2.2988301561786457) -- (7.87150408491317,-2.434991620956909);
\draw [color=zzttqq] (7.974993482966486,-2.2988301561786457) -- (7.868495915086833,-2.1650083790430896);
\draw [color=zzttqq] (11.46,-2.26)-- (-0.76,1.24);
\draw [color=qqwwzz] (4.28,-2.34)-- (11.46,-2.26);
\draw [color=qqwwzz] (11.46,-2.26)-- (4.239490756185171,1.2957046323808934);
\draw [color=qqwwzz] (4.239490756185171,1.2957046323808934)-- (4.28,-2.34);
\draw (-3.1796996051110575,1.2130395587174254)-- (9.680040962939401,1.35632357618874);
\draw (3.3551641618806585,1.2858514112744361) -- (3.251674763827342,1.1496899464961725);
\draw (3.3551641618806585,1.2858514112744361) -- (3.248666594001004,1.4196731884099925);
\draw (-2.2,-1) node[anchor=north west] {Luas daerah ABC = 13.05};
\draw (6.8,0.519999999999999) node[anchor=north west] {Luas daerah BCD = 13.05};
\begin{scriptsize}
\draw [fill=qqqqtt] (-0.76,1.24) circle (1.5pt);
\draw[color=qqqqtt] (-0.8,1.5799999999999992) node {$A$};
\draw [fill=qqqqtt] (4.28,-2.34) circle (1.5pt);
\draw[color=qqqqtt] (4.319999999999999,-2.5600000000000014) node {$B$};
\draw [fill=qqqqtt] (11.46,-2.26) circle (1.5pt);
\draw[color=qqqqtt] (11.700000000000001,-2.2000000000000015) node {$C$};
\draw [fill=qqqqtt] (4.239490756185171,1.2957046323808934) circle (1.5pt);
\draw[color=qqqqtt] (4.199999999999999,1.6199999999999992) node {$D$};
\end{scriptsize}
\end{tikzpicture}
    \end{minipage}}%  

\vspace{1cm}
\adjustbox{valign=t}{\begin{minipage}{0.7\textwidth}
\definecolor{qqwwzz}{rgb}{0.0,0.4,0.6}
\definecolor{zzttqq}{rgb}{0.6,0.2,0.0}
\definecolor{qqqqtt}{rgb}{0.0,0.0,0.2}
\definecolor{cqcqcq}{rgb}{0.7529411764705882,0.7529411764705882,0.7529411764705882}
\centering
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm]
\draw [color=cqcqcq,dash pattern=on 2pt off 2pt, xstep=1.0cm,ystep=1.0cm] (-5,-3) grid (4.5,4);
\draw[->,color=black] (-5,0.0) -- (4.5,0.0);
\foreach \x in {-4,-3,-2,-1,1,2,3}
\draw[shift={(\x,0)},color=black] (0pt,2pt) -- (0pt,-2pt) node[below] {\footnotesize $\x$};
\draw[->,color=black] (0.0,-3) -- (0.0,4);
\foreach \y in {-2,-1,1,2,3}
\draw[shift={(0,\y)},color=black] (2pt,0pt) -- (-2pt,0pt) node[left] {\footnotesize $\y$};
\draw[color=black] (0pt,-10pt) node[right] {\footnotesize $0$};
\clip(-5,-3) rectangle (4.5,4);
\fill[line width=1.2000000000000002pt,color=zzttqq,fill=zzttqq,fill opacity=0.1] (-4.0,-2.0) -- (-1.0,-2.0) -- (-1.0,2.0) -- (-4.0,2.0) -- cycle;
\fill[line width=1.2000000000000002pt,color=qqwwzz,fill=qqwwzz,fill opacity=0.1] (-4.0,-2.0) -- (-1.0,-2.0) -- (3.0,2.0) -- (0.0,2.0) -- cycle;
\draw [line width=1.2000000000000002pt,color=zzttqq] (-4.0,-2.0)-- (-1.0,-2.0);
\draw [line width=1.2000000000000002pt,color=zzttqq] (-1.0,-2.0)-- (-1.0,2.0);
\draw [line width=1.2000000000000002pt,color=zzttqq] (-1.0,2.0)-- (-4.0,2.0);
\draw [line width=1.2000000000000002pt,color=zzttqq] (-4.0,2.0)-- (-4.0,-2.0);
\draw [line width=1.2000000000000002pt,color=qqwwzz] (-4.0,-2.0)-- (-1.0,-2.0);
\draw [line width=1.2000000000000002pt,color=qqwwzz] (-1.0,-2.0)-- (3.0,2.0);
\draw [line width=1.2000000000000002pt,color=qqwwzz] (3.0,2.0)-- (0.0,2.0);
\draw [line width=1.2000000000000002pt,color=qqwwzz] (0.0,2.0)-- (-4.0,-2.0);
\draw (-4.5,3.5) node[anchor=north west] {\small Luas daerah ABCD = 12};
\draw (0.2,3.5) node[anchor=north west] {\small Luas daerah ABC'D' = 12};
\begin{scriptsize}
\draw [fill=qqqqtt] (-4.0,-2.0) circle (1.5pt);
\draw[color=qqqqtt] (-4.000000000000003,-2.1999999999999997) node {$A$};
\draw [fill=qqqqtt] (-1.0,-2.0) circle (1.5pt);
\draw[color=qqqqtt] (-0.9600000000000015,-2.1799999999999997) node {$B$};
\draw [fill=qqqqtt] (-1.0,2.0) circle (1.5pt);
\draw[color=qqqqtt] (-1.0000000000000016,2.3200000000000003) node {$C$};
\draw [fill=qqqqtt] (-4.0,2.0) circle (1.5pt);
\draw[color=qqqqtt] (-4.000000000000003,2.3400000000000003) node {$D$};
\draw [fill=qqqqtt] (3.0,2.0) circle (1.5pt);
\draw[color=qqqqtt] (3.2,2.2800000000000002) node {$C'$};
\draw [fill=qqqqtt] (0.0,2.0) circle (1.5pt);
\draw[color=qqqqtt] (0.19999999999999896,2.2800000000000002) node {$D'$};
\draw [fill=qqqqtt] (-4.0,1.0) circle (1.5pt);
\draw[color=qqqqtt] (-4.220000000000003,1.08) node {$E$};
\draw [fill=qqqqtt] (-4.0,0.0) circle (1.5pt);
\draw[color=qqqqtt] (-4.160000000000003,0.24) node {$F$};
\draw [fill=qqqqtt] (-4.0,-1.0) circle (1.5pt);
\draw[color=qqqqtt] (-4.220000000000003,-0.9) node {$G$};
\draw [fill=qqqqtt] (-1.0,1.0) circle (1.5pt);
\draw[color=qqqqtt] (-1.2800000000000016,1.1) node {$E'$};
\draw [fill=qqqqtt] (-2.0,0.0) circle (1.5pt);
\draw[color=qqqqtt] (-2.060000000000002,0.28) node {$F'$};
\draw [fill=qqqqtt] (-3.0,-1.0) circle (1.5pt);
\draw[color=qqqqtt] (-2.760000000000002,-0.9999999999999999) node {$G'$};
\end{scriptsize}
\end{tikzpicture}
    \end{minipage}}% 
    \hfill
\adjustbox{valign=t}{\begin{minipage}{0.3\textwidth}
Perhatikan jaraknya:
\begin{align*}
AD&=4\quad \textrm{dan}\quad DD'=4\\
AE&=3\quad \textrm{dan}\quad EE'=3\\
AF&=2\quad \textrm{dan}\quad FF'=2\\
AG&=1\quad \textrm{dan}\quad GG'=1
\end{align*}

\end{minipage}}%

\vspace{1cm}
Kita dapat menyimpulkan bahwa suatu gusuran dapat sepenuhnya dijelaskan jika kita mengetahui 
\begin{enumerate}[(a)]
\item garis tetap (\emph{invariant})
\item bayangan titik yang tidak terletak pada garis invarian.
\end{enumerate}

Dengan demikian
\begin{enumerate}
\item Titik pada garis invarian tidak bergerak.
\item Jarak perpindahan dari setiap titik yang tidak terletak pada garis invarian, bergantung pada jaraknya dari garis invarian.
\item Semua titik yang tidak terletak pada garis invarian, berpindah sejajar dengan garis invarian.
\item Tinggi dari bangun tetap konstan.
\item Luas daerah terkekalkan.
\item Kesejajaran terkekalkan.
\item Urutan titik terkekalkan.
\end{enumerate}    
    
\chapter{Regangan (\emph{Stretching})}    
Suatu regangan dapat sepenuhnya dijelaskan jika kita mengetahui 
\begin{enumerate}[(a)]
\item arah peregangan.
\item perbandingan dari panjang sisi yang bersesuaian.
\end{enumerate}

\vspace{1cm}
\adjustbox{valign=t}{\begin{minipage}{0.7\textwidth}
\definecolor{qqwwzz}{rgb}{0.0,0.4,0.6}
\definecolor{zzttqq}{rgb}{0.6,0.2,0.0}
\definecolor{qqqqff}{rgb}{0.0,0.0,1.0}
\definecolor{cqcqcq}{rgb}{0.7529411764705882,0.7529411764705882,0.7529411764705882}
\centering
\begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm]
\draw [color=cqcqcq,dash pattern=on 3pt off 3pt, xstep=1.0cm,ystep=1.0cm] (-0.5,-4) grid (6.5,4);
\draw[->,color=black] (-0.5,0.0) -- (6.5,0.0);
\foreach \x in {1,2,3,4,5}
\draw[shift={(\x,0)},color=black] (0pt,2pt) -- (0pt,-2pt) node[below] {\footnotesize $\x$};
\draw[->,color=black] (0.0,-4) -- (0.0,4);
\foreach \y in {-3,2,1,1,2,3}
\draw[shift={(0,\y)},color=black] (2pt,0pt) -- (-2pt,0pt) node[left] {\footnotesize $\y$};
\draw[color=black] (0pt,-10pt) node[right] {\footnotesize $0$};
\clip(-0.5,-4) rectangle (6.5,4);
\fill[line width=1.2000000000000002pt,color=zzttqq,fill=zzttqq,fill opacity=0.25] (2.0,-3.0) -- (5.0,-3.0) -- (5.0,-1.0) -- (2.0,-1.0) -- cycle;
\fill[line width=1.2000000000000002pt,color=qqwwzz,fill=qqwwzz,fill opacity=0.1] (2.0,-3.0) -- (5.0,-3.0) -- (5.0,3.0) -- (2.0,3.0) -- cycle;
\draw [line width=1.2000000000000002pt,color=zzttqq] (2.0,-3.0)-- (5.0,-3.0);
\draw [line width=1.2000000000000002pt,color=zzttqq] (5.0,-3.0)-- (5.0,-1.0);
\draw [line width=1.2000000000000002pt,color=zzttqq] (5.0,-1.0)-- (2.0,-1.0);
\draw [line width=1.2000000000000002pt,color=zzttqq] (2.0,-1.0)-- (2.0,-3.0);
\draw [line width=1.2000000000000002pt,color=qqwwzz] (2.0,-3.0)-- (5.0,-3.0);
\draw [line width=1.2000000000000002pt,color=qqwwzz] (5.0,-3.0)-- (5.0,3.0);
\draw [line width=1.2000000000000002pt,color=qqwwzz] (5.0,3.0)-- (2.0,3.0);
\draw [line width=1.2000000000000002pt,color=qqwwzz] (2.0,3.0)-- (2.0,-3.0);
\draw (2.5,2.2632380952380946) node[anchor=north west] {$\ds\frac{AD'}{AD}=3$};
\begin{scriptsize}
\draw [fill=qqqqff] (2.0,-3.0) circle (1.5pt);
\draw[color=qqqqff] (2.0278095238095237,-3.2451428571428576) node {$A$};
\draw [fill=qqqqff] (2.0,-1.0) circle (1.5pt);
\draw[color=qqqqff] (1.7051428571428573,-0.8942857142857148) node {$D$};
\draw [fill=qqqqff] (5.0,-1.0) circle (1.5pt);
\draw[color=qqqqff] (5.231428571428571,-0.8712380952380956) node {$C$};
\draw [fill=qqqqff] (5.0,-3.0) circle (1.5pt);
\draw[color=qqqqff] (4.977904761904762,-3.2681904761904765) node {$B$};
\draw [fill=qqqqff] (2.0,3.0) circle (1.5pt);
\draw[color=qqqqff] (2.0278095238095237,3.415619047619047) node {$D'$};
\draw [fill=qqqqff] (5.0,3.0) circle (1.5pt);
\draw[color=qqqqff] (5.0931428571428565,3.3464761904761895) node {$C'$};
\end{scriptsize}
\end{tikzpicture}
    \end{minipage}}% 

\chapter{Penutup}
Dengan penggunaan bidang koordinat kita dapat membentuk dan menggunakan matriks transformasi untuk berbagai transformasi. 

Sebagai bahan penyelidikan dapat kita awali dengan pertanyaan-pertanyaan berikut ini: 
\begin{itemize}[$\ds\circ$]
\item Bagaimana cara menyatakan rotasi dengan pusat di titik asal ($O(0,0)$ diwakili oleh suatu mat-riks? 
\item Bagaimana cara matriks rotasi digunakan untuk menjalankan rotasi terhadap dua objek bangun datar (dua dimensi)? 
\item Bagaimana cara translasi dinyatakan dengan menggunakan matriks? 
\item Bagaimana cara dilatasi dinyatakan dengan menggunakan matriks? 
\item Bagaimana kita dapat mewakili dan transformasi menggunakan matriks? Apakah ada perubahan yang tidak dapat diwakili dengan menggunakan matriks? 
\item Bagaimana cara kita menunjukkan dan mentransformasikan dengan menggunakan matriks? Adakah transformasi yang tidak dapat diwakili dengan menggunakan matriks? 
\item Bagaimana cara kita menggunakan perkalian matriks untuk menyelidiki komposisi transformasi? 
\item Apa batasan (jika ada) yang Anda miliki ketika menggunakan perkalian matriks untuk komposisi transformasi? Apakah batasan ini khas untuk setiap transformasi tertentu? 
\item Bagaimana cara kita menggunakan komposisi transformasi untuk menyelidiki perpindahan yang lebih kompleks?
\end{itemize}

\begin{thebibliography}{9}
\bibitem{} Wisdom, Nathan. \emph{Transformation Geometry and Symmetry for High School},\\ http://jwilson.coe.uga.edu/EMAT6680Fa08/Wisdom/EMAT6690/Trans\%20Geometry\%\\20NJW/Transformation\%20Geometry.htm, (diakses 10 s.d. 14 Mei 2014)
\bibitem{} ShareLaTeX. https://www.sharelatex.com, (diakses 10 s.d. 14 Mei 2014)
\bibitem{} GeoGebra. http://www.geogebra.org/cms/en/, \emph{software}, (digunakan 10 s.d. 14 Mei 2014)
\bibitem{} Google Translate. https://translate.google.com, (diakses 10 s.d. 14 Mei 2014)
\bibitem{} Glosarium Istilah Asing-Indonesia. http://bahasa.kemdiknas.go.id/glosarium/?row=1170,\\ \emph{software}, (digunakan 10 s.d. 14 Mei 2014)
\bibitem{} The Free Dictionary. http://www.thefreedictionary.com, (diakses 10 s.d. 14 Mei 2014)
\bibitem{} Kamus 2.04. http://ebsoft.web.id/download/kamus/, \emph{software}, (digunakan 10 s.d. 14 Mei 2014)
\bibitem{} Kamus Besar Bahasa Indonesia (KBBI). http://kbbi.web.id, (diakses 10 s.d. 14 Mei 2014)
\bibitem{} The Collins Dictionary. http://www.collinsdictionary.com, (diakses 10 s.d. 14 Mei 2014)

\end{thebibliography}
\end{document}




5 comments:

  1. Cetak bukunya pak,, solusi lebih baik,, matematika berkembang di anak-anak samawa ke depan,, adakan pelatihan belajar latex ne pak.

    ReplyDelete
  2. Kerja yang sangat bagus, semoga Bapak berkenan saya menjadi murid bapak untuk belajar \LaTeX dan lainnya.

    ReplyDelete
  3. Sama-sama belajar, Pak Gun. (Saat itu, untuk gambar dalam dokumen di atas masih saya gunakan GeoGebra.

    ReplyDelete

Related Posts Plugin for WordPress, Blogger...